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A B S T R A C T   

Deciding the signal length is an important challenge for one-class time-series classification (OCTSC). This paper 
aims to develop an OCTSC algorithm that does not require model retraining for different signal lengths. For this 
purpose, a distance-based one-class time-series classification approach using local cluster balance (OCLCB) is 
proposed. OCLCB extracts feature vectors, namely, local cluster balance (LCB), from the clustering results of 
sliding windows. K-means clustering is applied to the sliding windows extracted from the training signal. Then, 
the local prototype (LP) is calculated as the average of the local cluster balance (LCB) in the training data. Unseen 
scores are computed as the distance metrics between LP and LCBs in the testing data. Since the sliding window 
size is independent of the entire signal size, OCLCB does not need to retrain the model. This aspect gives the 
benefit of reducing the parameter tuning costs. The source code is uploaded at https://github.com/ToshiHayash 
i/OCLCB.   

1. Introduction 

Time-series data are a set of observations obtained in chronological 
order, represented as a sequence or signal, and processed in various 
areas, such as biometric signals (Merdjanovska and Rashkovska, 2022), 
financial records (D’Urso et al., 2020), or weather records (Wang et al., 
2021). In the context of time-series data, time-series classification (TSC) 
is a supervised classification problem. Several algorithms have been 
proposed for TSC (Rjoob et al., 2022). However, classification results 
can be affected by issues with training data, such as data imbalance 
(Hernandez-Matamoros et al., 2020), noisy labels (Karmy et al., 2021), 
and outliers (Alimohammadi and Chen, 2021). In addition, the model 

cannot classify data into unseen classes that were not included in the 
training data. The challenge of unseen classes is critical because some 
data are rare or nonexistent. 

One-class classification (OCC) (Schölkopf et al., 2001) is a special 
type of supervised classification problem in which training data have 
only one class. The goal is to classify data into one seen class or other 
unseen classes. A solution to this problem is unsupervised learning 
because training data from only one class is not helpful for supervised 
classification. OCC is also known as anomaly detection (AD) in wider 
terms. AD methods are classified into supervised learning, where 
training data are fully labeled, unsupervised learning, where data are 
unlabeled and normal and abnormal data are mixed, and semisupervised 
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learning, where labeled and unlabeled data are mixed. OCC algorithms 
are applicable in all settings, as unsupervised solutions do not rely on 
annotations. 

The main advantage of OCC algorithms is their ability to detect un
seen classes. This aspect can support supervised learning with the 
strategy to train data class by class; OCC does not have data imbalance 
problems because the class label is only one. Moreover, noise and out
liers can be detected by cross-validation. Accordingly, OCC is a prom
ising approach to solving a wide range of training dataset problems in 
supervised classification. 

One-class time-series classification (OCTSC) is a type of OCC for 
time-series data. OCTSC is classified into three levels (Li and Jung, 
2022): time-point level, time-interval level (subsequence of the signal), 
and time-series level (the entire signal). However, existing OCTSC 
methods (Mauceri et al., 2020, Blázquez-García et al., 2021, Hayashi 
et al., 2022) have a common weakness in that the algorithms need to 
retrain the machine learning model in order to analyze signals of 
different lengths. This aspect increases the parameter tuning cost. 

In summary, the motivation of this paper is to develop an OCTSC 
algorithm that does not require model retraining for signals of different 
lengths. One of the gaps in the literature is that current models process 
the entirety of a signal simultaneously, which limits their applicability to 
signals of varying lengths. Instead, the models should learn from arbi
trary inputs that are robust to changes in signal length. This will enable a 
more flexible and versatile application of the models to a wider range of 
signals. 

For this purpose, a novel OCTSC algorithm, namely, a distance-based 
one-class time-series classification approach using local cluster balance 
(OCLCB), is proposed by considering three key questions. The first 
question is how to ensure that a model input is robust to changes in 
signal length. In this study, sliding windows are used as model input 
because the window size is independent of the overall signal length. The 
second question concerns the algorithm used to create the model. An 
unsupervised clustering model is applied since sliding windows do not 
have annotations. The third question is how to use clustering results to 
analyze an entire signal. This study uses cluster balance, which repre
sents the amount of data for all clusters, as a feature vector to approx
imate the balance of shapes in the signal since sliding windows that 
belong to the same cluster should have similar shapes. Moreover, the 
feature dimension is equal to the number of clusters, making it robust to 
changes in signal length. 

In the end, unseen scores can be computed using the distance metric 
between cluster balances for training and testing data. To accomplish 
this, local cluster balance (LCB) is proposed as a feature vector of the 
local area of the signal. The size of the local area corresponds to the 
signal length. LCB can be computed for various signal lengths without 
requiring retraining of the clustering model because the model inputs 
are sliding windows. 

The contributions of this paper are as follows:  

• A distance-based one-class time-series classification approach using 
local cluster balance (OCLCB) is proposed. The main novelty is using 
the clustering results of sliding windows for feature extraction from 
the signal. In particular, LCBs are proposed as feature vectors in the 
local area of the signal.  

• Evaluation was performed by authentication and change detection 
tasks using synthetic signals (created by connecting two sine waves) 
and two real-world datasets. OCLCB displayed fair performance in 
terms of both accuracy and processing speed.  

• OCLCB does not need model retraining to process different lengths of 
signals. Such an advantage reduces parameter tuning costs.  

• OCLCB does not require a graphics processing unit (GPU). 

The organization of the paper is as follows. Section 2 describes 
related work and its shortcomings. Section 3 presents the proposed 
OCLCB algorithm, followed by Sections 4 and 5, which present the 

experimental results and discussions, respectively. Finally, Section 6 
concludes the paper and provides avenues for future work. 

2. Related work 

2.1. Time-series classification 

The first stage of time-series classification (TSC) is preprocessing, 
which aims to transform raw signals into a suitable form for classifica
tion. Several preprocessing methods have been applied by researchers, 
including wavelet transform (Barua et al., 2023), adaptive thresholding 
(Sadek et al., 2018), Cartan curvature (Cimr et al., 2020), and Euclidean 
arc length (Cimr et al., 2021). The main challenge in preprocessing is 
how to divide the signal. Generally, signals from sensor data are split 
into arbitrary-sized subsignals. One of the common approaches is to use 
sliding windows, which are subsequences of the signal extracted by 
sliding. Sliding windows are obtained by two parameters: window size 
and stride. A smaller stride can increase the amount of data, which can 
provide higher accuracy but also increase processing time. 

Afterward, the classification stage aims to classify the data into the 
classes defined by expert annotations. Classification techniques can be 
roughly divided into four groups: distance-based, feature-based, deep 
learning (DL)-based, and ensemble approaches (Cheng et al., 2021). 
Distance-based methods (Lee et al., 2012; Abanda et al., 2018) classify 
data into the same class as the most similar signals. These methods are 
known as nearest neighbor approaches (Lee et al., 2012.), and several 
distance metrics are applied to compute neighboring samples (Abanda 
et al., 2018). 

In contrast, the feature-based methods substitute the preprocessing 
stage with feature extraction. Various feature extraction methods have 
been proposed, such as dissimilarity-based representation (Mauceri 
et al., 2020), bag of features (Baydogan et al., 2013), symbolic aggregate 
approximation (SAX) (Lin et al., 2003), and symmetric-based feature 
extraction (Barua et al., 2023). These extracted features are then used as 
the input for classification algorithms. 

In addition, the DL-based approach extends the feature-based 
method into an end-to-end framework. Several types of architectures 
have been developed, such as Conv1D (one-dimensional convolution) to 
capture local sequence patterns (Sánchez-Reolid et al., 2022) and RNN 
(recurrent neural network) and LSTM (long short-term memory) to 
capture temporal information (Hüsken and Stagge, 2003; Parija et al., 
2021). Moreover, residual networks and attention have been applied to 
improve classification accuracy (Zhu et al., 2021). 

On the other hand, ensemble approaches involve fusions between 
multiple features (Cheng et al., 2021; Bai et al., 2021), classifiers 
(Hussain and Mian Qaisar, 2022), or other existing techniques. These 
studies achieve high accuracy and have been implemented in applica
tions such as biometric signals (Hussain and Mian Qaisar, 2022; Singer 
et al., 2021), sound classification (Zhang et al., 2021), and power quality 
disturbance analysis (Wang et al., 2022). 

Since the classification stage involves supervised learning, it expe
riences challenges due to problems in the training dataset, such as data 
imbalance, outliers, and unseen classes. 

2.2. One-class classification 

OCC is a machine learning task where the training data have only one 
seen class. The goal of OCC is to classify the data into the seen class or 
other unseen classes. Several OCC algorithms have been proposed. The 
common framework includes the score functions and threshold values. 
The main challenge is to define a score function, which can be a likeli
hood for a seen class (seen score) or a distance metric from a seen class 
(unseen score). Moreover, OCC is evaluated by the area under the curve 
(AUC) score. Such a metric is computed by considering all possible 
thresholds between seen and unseen classes. The AUC score corresponds 
to the accuracy where the best threshold value is selected (how to select 
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such a value is not considered. 
Table 1 summarizes the OCC methods in three data types (feature, 

image, and time-series) and four strategies (shallow method, feature 
extraction, fake unseen, and self-supervision). 

Shallow methods are traditional algorithms for feature data that 
were proposed in the 2000 s. The one-class support vector machine 
(OCSVM) (Schölkopf et al., 2001) considers the mapping function in the 
feature vector space and computes the hyperplane between the mapped 
data and the origin in the vector space. In contrast, the local outlier 
factor (LOF) (Breunig et al., 2000) considers local density for original 
and neighbor samples, where outliers are supposed to have different 
local density from those neighbors. In addition, isolation forest (Liu 
et al., 2008) creates a random tree structure and classifies isolated 
samples in the tree into unseen classes. Moreover, one-class 1-nearest 
neighbor (Khan and Ahmad, 2018) computes unseen scores by a dis
tance metric from the neighbor samples; prototypes, the representative 
samples, are used to reduce the computation cost. These methods are 
still competitive on feature data. Recently, Lenz et al. (2021) proposed 
average localized proximity (ALP) to improve the localization process of 
LOF. ALP shows the best AUC score for feature data. 

The feature extraction strategy obtains feature vectors from images 
or time series. Extracted feature vectors are then classified by shallow 
OCC methods or other OCC algorithms designed for feature data. 
Autoencoder (AE) (Cao et al., 2019) is a common method for feature 
extraction. In addition, Ruff et al. (2018) combined DL-based feature 
extraction with support vector data description (SVDD) in the same way 
as in OCSVM. 

The fake unseen strategy creates pseudo samples for unseen classes 
and applies supervised classification between a real seen class and fake 
unseen classes. This strategy was proposed for image data, where 
methods such as Generative Adversarial Net (GAN) are applied to 
generate fake unseen data (Yang et al., 2019). In addition, outlier 
exposure (OE) (Hendrycks et al., 2018) imports other datasets as fake 
unseen classes. The fake unseen strategy is reimported to feature data; 
the articles (Aguilar et al., 2021; Kang, 2022) treat the subpart of the 
training data as an unseen class. However, a fake sample is created 
without information about the actual unseen classes. This causes errors 
due to the difference between the fake unseen and actual unseen 

samples. 
The self-supervised approach trains the model for subtasks and 

classifies between seen and unseen classes by model error. The model 
learns from only data belonging to a seen class. Therefore, model errors 
for seen data are smaller compared to the data belonging to unseen 
classes. AE is a common subtask, where reconstruction error is a model 
error (Hawkins et al., 2002). This architecture supplies a fast-processing 
speed but has limitations in the AUC score. Golan and El-Yaniv (2018) 
proposed classification subtasks into 72 geometric transformations 
(GEO), which shows the best AUC score but has limitations in processing 
speed. The one-class image transformation network (OCITN) (Hayashi 
et al., 2021) considers the image transformation subtask to the one 
defined output image, namely, the goal image. Such a method shows a 
fair AUC score and fast processing speed. In addition, a self-supervised 
strategy is imported for feature data. Hayashi and Fujita (2022) pro
posed feature slide prediction (FSP) subtasks, where self-labeled data are 
created by feature slides. 

In addition, this study considers the OCTSC algorithms described in 
the next section. 

2.3. One-class time-series classification 

OCTSC algorithms are categorized into feature extraction (Mauceri 
et al., 2020; Chang et al., 2021), fake unseen (Zhu et al., 2022), and self- 
supervision methods (Blázquez-García et al., 2021). This categorization 
is the same as for image data. 

For feature extraction, Mauceri et al. (2020) combined dissimilarity- 
based feature representation with prototypes. This representation is 
then combined with a one-class 1-nearest neighbor classifier. Their ex
periments are performed with 12 distance metrics and 8 prototypes. 
While the method is simple and fast, the accuracy is not higher than that 
of other methods (Hayashi et al., 2022). 

Chang et al. (2021) achieved better performance than Mauceri et al. 
(2020) in semiconductor manufacturing by incorporating expert 
knowledge into the signal segmentation process. However, the use of 
expert knowledge is a potential weakness, as it may not be easily 
generalized to other domains. 

Zhu et al. (2022) introduced the fake unseen approach for time-series 
data by applying adversarial training, where adversarial samples are 
considered an unseen class. However, fake unseen samples might be 
different from actual ones because these fakes are not created from real 
unseen classes. 

Blázquez-García et al. (2021) proposed the signal multiplication 
subtask for water leak detection, which achieved the best AUC score in 
the comparison (Hayashi et al., 2022). Nevertheless, the method has 
disadvantages in terms of processing speed, which is critical for pro
cessing a large dataset, such as sliding windows. It should be noted that 
the experiment did not finish even after a week of computation. 

Hayashi et al. (2022) proposed a one-class signal transformation 
network (OCSTN). The algorithm considers the signal transformation 
network (STN) to transform seen signals into a goal signal. The unseen 
score is a distance metric between a goal signal and model output. The 
core hypothesis of this algorithm is that the model error for the seen 
class is smaller compared to the unseen classes because the STN model 
trains on data from only the seen class. However, the method is related 
to the STN parameters and goal signal, and the result may degrade when 
training data have diversity, such as sliding windows. 

One common weak point in existing OCTSC algorithms is their 
inability to determine the appropriate signal length for analysis. 
Discovering the best length is challenging because existing OCTSC 
methods require model retraining and parameter tuning for signals of 
different lengths. To address this weakness, the proposed OCLCB applies 
a clustering algorithm to sliding windows of the signal. This eliminates 
the need for model retraining for processing different lengths of signals. 
More specifically, LCB is computed as the feature vector in the local area 
of a signal, and OCLCB is categorized into feature extraction methods in 

Table 1 
OCC algorithms.  

Strategy Data types 

Feature Image Time-series 

Shallow 
methods 

OCSVM ( 
Schölkopf et al., 
2001) 
LOF (Breunig 
et al., 2000) 
IF (Liu et al., 
2008) 
OC1-NN (Khan 
et al., 2008) 
ALP (Lenz et al., 
2021) 

Combined with feature extraction. 

Feature 
extraction 

None AE (Cao et al., 
2019) 
Ruff et al. (2018) 

Mauceri et al. (2020) 
Chang et al. (2021) 
OCLCB (Proposal) 

Fake unseen Aguilar et al., 
2021; Kang, 2022 

GAN (Yang et al., 
2019) 
OE (Hendrycks 
et al. 2018) 

Zhu et al. (2022)  

Combined with feature extraction. 
Self- 

supervision 
AE (Hawkins 
et al., 2002) 
FSP (Hayashi and 
Fujita, 2022) 

AE (Hawkins et al., 
2002) 
GEO (Golan and 
El-Yaniv, 2018) 
OCITN (Hayashi 
et al., 2021) 

Blázquez-García et al. 
(2021) 
OCSTN (Hayashi 
et al., 2022)  
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Table 1. 

2.4. Clustering algorithms and cluster balance 

Clustering is an unsupervised learning technique that does not rely 
on annotation. The goal of clustering is to divide data into groups 
(clusters) based on a hypothesis. Several clustering algorithms have 
been proposed, including K-means, Gaussian Mixture Model, and 
DBSCAN (Pedregosa et al., 2011). These algorithms can be categorized 
into two groups based on whether or not they create models. The pro
posed OCLCB requires a clustering model because the same clustering 
must be applied to both training and testing signals. 

The idea is inspired by the class imbalance problem. Apart from class 
imbalance, cluster imbalance is not an important problem, and only a 
few studies care about such an issue when applying clustering results as 
pseudolabels for self-supervised learning. Cluster imbalances can be 
addressed in the same ways as class imbalances (Li et al., 2022). 
Moreover, there is a specific clustering task called balanced clustering 
(Dai et al., 2022). 

This study considers cluster balance for feature extraction. Here, 
cluster imbalance is not considered a problem because the goal is to 
compute the distance between seen and unseen classes. 

2.5. The proposed method 

This study presents a novel OCTSC algorithm, namely, OCLCB. The 
proposed method applies a clustering algorithm to sliding windows 
extracted from the training signal and computes the cluster balance from 
the clustering result. The cluster balance corresponds to the balance of 
shapes in the signal. The hypothesis lies in the dissimilarity of the cluster 
balance for seen and unseen classes. Consequently, the unseen score 
could be computed as a distance metric between cluster balances for 
training and testing data. Here, the distance should be computed be
tween the same length of signals. For this purpose, local cluster balance 
(LCB) is defined as the cluster balance in the local area of the signals. 
Fig. 1 shows the OCLCB framework, which includes training and testing 
stages. 

The goal of the training stage is to create a clustering model and a 
local prototype (LP) for the training signal. These outputs are used in the 
testing stage, while the training signal is the whole univariate time- 
series signal, which needs to be split into subsignals for analysis. For 
this purpose, d-dimensional sliding windows are extracted. In addition, 
K-means is applied to sliding windows, and the clustering result is used 
to calculate cluster balance. Finally, the LP is computed as a represen
tation of the training data, where local size LS corresponds to the signal 
length for analysis. 

The goal of the testing stage is to compute unseen scores for the local 
area of the signal. First, d-dimensional sliding windows are extracted, 

Fig. 1. OCLCB framework.  
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and the cluster signal is obtained by applying the clustering model to 
sliding windows. Then, another sliding window is applied to cluster the 
signal, and the LCB is computed; LCB corresponds to the feature vector 
in the local area of the signal. Finally, unseen scores are computed by the 
distance metric between LCBs and LP. 

2.6. Training stage 

The training data are a univariate signal Xtr, which is given as: 

Xtr = [Xtr1, Xtr2, ⋯,XtrT ,⋯,XtrL], (1)  

where XtrT represents a value at time T, and L is the length of Xtr and is 
supposed to be an arbitrarily large value. Therefore, Xtr needs to be split 
into subsignals for analysis. 

The straightforward approach is to apply arbitrary length (defined as 
local size LS) sliding windows to Xtr, which requires a large amount of 
memory space for larger window sizes. Thus, this study instead extracts 
d-dimensional sliding windows Wtr from Xtr as: 

Wtr = [Wtr1, ⋯,WtrT ,⋯,WtrL− d+1]

= [(Xtr1,⋯Xtrd),⋯, (XtrT ,⋯Xtrd+T− 1),⋯, (XtrL− d+1,⋯XtrL) ], (2)  

where d is the window size, which is smaller than LS (d>=2); therefore, 
the memory space can be smaller, and the number of sliding windows is 
L-d + 1. Then, clustering is considered for sliding windows. Let f be a 
clustering model that aims to assign sliding window WtrT into an arbi
trary cluster Ci: 

f : WtrT → Ci, where Ci ∈ C  

C = {C1, C2, ⋯,Ci,⋯,CK} (3)  

where C is the set of clusters and K indicates the number of clusters. This 
study applies k-means (MacQueen, 1967) to obtain the clustering model, 
as shown in Algorithm.  

Algorithm. Obtaining the K-means model from sliding windows 

Input: d-dimensional sliding windows Wtr, number of clusters K, ε > 0 
Output: clustering model f, centroids μ  
1. Prepare k centroids: 
μ = {μ1, μ2, ⋯,μK}, where μ is d-dimensional data. 
μold = μ //μold is used in step 4 to check the convergence.  
2. Assign data to the cluster that has the nearest centroid. 
f: WtrT→Ci. 
i = argmin(d(WtrT,μj)), forj = 1toK.  
3. Update centroids that are the average of data in clusters. 

μj =
(
∑

Wtr)
|Cj |

,whereWtr ∈ Cj, forj = 1,⋯,K.  

4. Repeat steps 2 and 3 until convergence. 
//Convergence is guaranteed based on the centroids’ change. 
If 
∑K

j=1d(μj,μoldj) ≤ ε: 
Convergence. 
else: 
μold =.μ 
Return to step 2.  
5. Take model f and the centroids μ.  

In the previous algorithm, ε is threshold value to determine the 
convergence. 

The clustering signal Ctr is obtained by applying a clustering model: 

Ctr = [Ctr1,Ctr2, ⋯,CtrT ,⋯,CtrL− d+1]

= [f (Wtr1), f (Wtr2), ⋯, f (WtrT),⋯, f (WtrL− d+1) ]. (4) 

Cluster Balance CBtr is a k-dimensional vector that is calculated from 
the clustering result by: 

CBtr = (|CtrT = C1|, |CtrT = C2| , ⋯, |CtrT = CK |). (5) 

Cluster balance in a local area is called LCB, which is not computed in 

the training stage to reduce memory space and processing time. Instead, 
LP is computed as a representative vector for LCBs in training data as 
follows: 

LP = LS*
CBtr

L − d + 1
, (6) 

where LS is defined as the local size (the size of the local area in the 
signal). 

2.7. Testing stage 

The testing signal Xte is given as follows: 

Xte = [Xte1, Xte2, ⋯, XteT ,⋯,XteM ], (7)  

where M is the length of the testing signal. The proposed method com
putes the feature vector of subsignals in Xte by applying Equations (8)- 
(10) instead of splitting Xte into subsignals by sliding windows (with 
lengths of LS), which can be memory intensive. 

Sliding windows Wte are extracted from Xte as: 

Wte = [Wte1, ⋯, WteT , ⋯,WteM− d+1]

= [(Xte1,⋯Xtrd),⋯, (XteT ,⋯Xted+T− 1),⋯, (XteM− d+1,⋯XtrM) ], (8)  

where the window size is d, which is the same as the training data. The 
cluster signal Cte is computed by applying the clustering model f to Wte 
by the following equation: 

Cte = [Cte1, Cte2, ⋯,CteT ,⋯,CteM− d+1]

= [f (Wte1), f (Wte2), ⋯, f (WteT),⋯, f (WteM− d+1) ]. (9) 

Then, local clusters are sliding windows from Cte as given: 

LCte = [LCte1, LCte2, ⋯, LCteM− LS+1]

= [(Cte1,⋯CteLS),⋯, (Cten,⋯Cten+LS− 1),⋯, (CteM− LS+1,⋯VteM) ].

(10) 

LCB is the cluster balance for the local area that is computed in each 
sliding window in LCte: 

LCBs = [LCB1, LCB2, ⋯, LCBn,⋯, LCBM− LS+1]LCBn

= (|C1inLCten|, |C2inLCten| , ⋯, |CKinLCten|) (11)  

where LCBn is a K-dimensional feature vector to represent the local area 
LCten. 

Equations (10) and (11) require considerable memory and process
ing time, so the cluster balance is only computed for the first window to 
reduce processing time. The balances for the other windows are calcu
lated based on the previous window by decreasing the count of the first 
cluster and increasing the count of the last cluster by one. 

Finally, the Unseen Score is computed as a distance metric between 
LCB and LP: 

Unseen Score = dist(LCBn, LP) =
∑K

i=1
|LCBni − LPi|, (12)  

where i is the dimension of LCBn and LP. 

3. Experiment 

3.1. Experimental setting 

The main advantage of OCLCB is that it does not require model 
retraining for different signal lengths, which is evident without an 
experiment. However, the main question is whether the performance of 
OCLCB is acceptable in terms of accuracy and processing speed. For this 
purpose, OCLCB is evaluated on two tasks, authentication in subsection 
4.2 and change detection in subsection 4.3. Additionally, the source 
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code is uploaded at https://github.com/ToshiHayashi/OCLCB. 
Experiments were conducted on one synthetic dataset and two real- 

world datasets. The synthetic dataset was created by combining sine 
waves, while the two real-world datasets included ballistocardiography 
(BCG) signals. BCG signals measure the recoil forces of the body in re
action to the cardiac ejection of blood into the vasculature (Cimr et al., 
2020. Cimr et al., 2021). 

3.2. Authentication task 

The goal of the authentication task is to classify signals as either the 
target person or not. The input signals are taken from the target person, 
which corresponds to the OCC. The experiment uses a sleeping dataset 
(Studnicka, 2022a), which has BCG signals collected from twenty people 
and annotated with the ID of signal holders. 

The proposed OCLCB is compared with existing OCTSC algorithms in 
terms of the AUC scores and processing time, namely, Mauceri et al. 
(2020), Blázquez-García et al. (2021), and OCSTN (Hayashi et al., 
2022). Preprocessing is performed by following Hayashi et al. (2022), 
where the original signals are split into subsignals with a length of 660 
(without sliding windows). The data are then randomly split into 
training and testing sets at a ratio of 80:20 by five different random 
seeds. The source code of the comparative methods is uploaded at 
https://github.com/ToshiHayashi/OCSTN. 

Mauceri et al. (2020) combined dissimilarity-based feature 

extraction and a one-class 1-nearest neighbor classifier. In their original 
paper, they conducted experiments with 12 distance metrics and 8 
prototypes. This comparison includes a k-means-based prototype and 
seven distance metrics, Kullback Leibler Divergence (KL), City block 
(CB), Cosine (Cos), Euclidean (Euc), Gaussian, Sigmoid (Sig), and 
Wasserstein (WS), because trying all combinations is extensive, and 
some dissimilarity metrics require much computation time. 

Blázquez-García et al. (2021) proposed a self-supervised approach 
using a classification subtask for signal multiplication, which uses four 
self-labels. Self-labeled signals are created as 1, 1.7, 2.4, and 3.1 times 
the original signal. The subtask is evaluated by two score functions: 
accuracy (Acc) and probability corresponding to correct prediction 
(prob acc). 

OCSTN (Hayashi et al., 2022) considered a signal transformation 
subtask into a goal signal defined as the average in the training signals. 
The results are obtained by two unseen scores: the model errors from a 
single STN (1 STN) and the summation of five errors (5 STN). 

The parameters are set with OCLCB as the proposed method, the 
window size for clustering as 2, and the number of clusters as 25. It is 
important to note that the experimental process differs from Fig. 1 to 
adjust OCLCB, as local size is not considered because the signal is 
already split into subsignals, and cluster balances are computed for each 
subsignal. Then, the prototype is calculated as the average of the cluster 
balances in the training signals. 

Table 2 compares the AUC score for the authentication dataset. Each 

Table 2 
Comparison of AUC scores for the authentication dataset.  

Seen 
user 

Mauceri et al. (2020), Dissimilarity + One-class 1-Nearest Neighbors, kmeans-based prototype Blázquez-García et al. 
(2021) 

OCSTN (Hayashi et al., 
2022) 

OCLCB  

KL CB Cos Euc Gauss Sig WS Acc Prob Acc 1 STN 5 STN  

1 86.7 ±
0.5 

68.9 ±
21.5 

68.6 ±
17.6 

74.0 ±
17.9 

77.4 ±
17.3 

79.2 ±
16.3 

80.9 ±
15.6 

84.8 ±
0.3 

91.4 ±
0.6 

88.5 ±
3.3 

90.6 ±
0.8 

91.7 ± 
0.6 

2 77. 4 ±
0.8 

75.3 ±
1.0 

73.1 ±
3.2 

73.6 ±
3.1 

73.9 ± 3.0 74.5 ±
3.0 

75.4 ± 3.6 72.1 ±
0.3 

84.4 ± 
0.7 

81.0 ±
2.7 

83.8 ±
0.7 

80.0 ±
0.5 

3 68.5 ±
0.7 

62.0 ±
4.4 

59.5 ±
5.1 

61.3 ±
5.4 

62.4 ± 5.4 63.5 ±
5.5 

64.9 ± 6.1 67.4 ±
0.2 

81.8 ± 
0.3 

69.7 ±
6.9 

75.9 ±
4.3 

72.0 ±
0.5 

4 77.5 ±
0.6 

55.2 ±
32.5 

60.7 ±
27.9 

67.4 ±
26.8 

71.5 ±
25.3 

73.8 ±
23.7 

75.7 ±
22.4 

82.4 ±
0.4 

90.4 ± 
0.6 

83.8 ±
6.3 

86.6 ±
0.4 

85.0 ±
0.6 

5 87.0 ±
0.6 

88.4 ±
4.9 

88.8 ±
4.0 

89.9 ±
4.0 

90.8 ± 4.0 90.2 ±
3.8 

90.7 ± 3.7 74.9 ±
0.3 

92.6 ± 
0.2 

84.7 ±
8.4 

89.1 ±
4.6 

88.1 ±
0.5 

6 79.3 ±
0.5 

69.1 ±
14.8 

69.6 ±
12.1 

73.3 ±
12.3 

75.7 ±
12.0 

76.6 ±
11.2 

77.6 ±
10.6 

74.0 ±
1.2 

92.1 ± 
0.3 

80.9 ±
9.3 

87.3 ±
1.2 

85.4 ±
0.3 

7 74.3 ±
1.3 

74.5 ±
10.0 

75.3 ±
8.2 

77.6 ±
8.1 

78.9 ± 7.8 77.8 ±
7.6 

78.9 ± 7.5 61.2 ±
0.7 

87.6 ± 
1.7 

68.5 ±
10.8 

77.2 ±
1.0 

81.1 ±
1.5 

8 74.2 ±
0.7 

75.0 ±
7.4 

76.1 ±
6.3 

78.0 ±
6.4 

79.1 ± 6.1 78.1 ±
6.0 

78.7 ± 
5.8 

69.3 ±
0.2 

77.3 ±
0.8 

64.1 ±
7.3 

66.6 ±
5.0 

64.3 ±
2.1 

9 77.5 ±
3.9 

73.4 ±
0.6 

70.1 ±
4.7 

70.8 ±
4.3 

71.3 ± 4.0 72.3 ±
4.3 

73.5 ± 4.9 71.5 ±
0.3 

86.7 ± 
0.4 

78.0 ±
6.4 

80.8 ±
4.5 

83.1 ±
0.5 

10 89.8 ± 0/ 
3 

67.8 ±
26.4 

64.1 ±
22.2 

71.4 ±
23.0 

75.9 ±
22.5 

78.7 ±
21.5 

81.1 ±
20.7 

90.0 ±
0.3 

95.1 ±
0.1 

92.4 ±
4.9 

95.1 ±
0.5 

95.6 ± 
0.1 

11 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 96.2 ±
0.2 

100 ± 
0.0 

98.9 ±
3.9 

99.9 ±
0.1 

99.2 ±
0.2 

12 79.1 ±
0.9 

70.0 ±
13.1 

68.3 ±
11.0 

71.7 ±
11.2 

74.0 ±
11.0 

74.8 ±
10.2 

75.9 ± 9.8 73.1 ±
1.3 

90.7 ± 
0.7 

76.1 ±
10.4 

82.9 ±
2.7 

82.5 ±
0.9 

13 74.3 ±
1.2 

66.6 ±
2.3 

64.1 ±
4.0 

65.3 ±
4.1 

66.1 ± 4.0 67.1 ±
4.3 

68.7 ± 5.7 68.6 ±
0.2 

85.9 ± 
0.4 

73.0 ±
5.6 

75.3 ±
2.8 

79.9 ±
0.3 

14 87.9 ±
0.5 

66.4 ±
23.0 

68.4 ±
19.0 

73.8 ±
18.9 

76.9 ±
18.0 

78.8 ±
17.0 

80.3 ±
16.2 

84.5 ±
0.4 

92.7 ± 
0.4 

86.7 ±
2.7 

88.9 ±
0.9 

89.1 ±
0.5 

15 72.4 ±
1.0 

73.2 ±
3.6 

72.3 ±
3.2 

73.5 ±
3.6 

74.5 ± 3.8 75.2 ±
3.7 

76.4 ± 4.6 69.7 ±
0.6 

90.3 ± 
0.6 

82.2 ±
5.8 

85.8 ±
1.4 

84.7 ±
0.8 

16 63.0 ±
0.4 

67.0 ±
4.3 

64.2 ±
5.4 

65.9 ±
5.6 

66.9 ± 5.4 66.0 ±
5.4 

66.6 ± 5.2 58.9 ±
0.8 

80.7 ± 
0.8 

63.4 ±
1.7 

64.4 ±
0.4 

62.4 ±
1.0 

17 84.4 ±
1.0 

61.9 ±
30.5 

69.3 ±
27.0 

74.9 ±
25.3 

78.5 ±
23.8 

80.7 ±
22.3 

82.4 ±
21.0 

87.5 ±
0.2 

95.7 ± 
0.4 

93.8 ±
2.5 

94.9 ±
0.7 

90.4 ±
0.4 

18 68.1 ±
0.9 

69.3 ±
6.0 

63.8 ±
9.1 

66.8 ±
9.5 

68.6 ± 9.2 68.8 ±
8.4 

69.9 ± 8.2 66.6 ±
0.2 

80.8 ± 
0.8 

72.5 ±
1.6 

73.7 ±
0.7 

73.9 ±
0.7 

19 72.3 ±
1.0 

78.4 ±
3.5 

75.4 ±
5.0 

75.3 ±
4.4 

75.3 ± 4.0 74.9 ±
3.8 

75.5 ± 3.8 70.7 ±
0.5 

91.8 ± 
0.4 

72.2 ±
3.1 

73.4 ±
2.0 

83.0 ±
0.8 

20 81.4 ±
1.5 

73.9 ±
11.0 

68.0 ±
12.2 

71.4 ±
12.0 

73.5 ±
11.6 

73.8 ±
10.6 

75.6 ±
10.8 

68.7 ±
0.4 

83.1 ± 
0.7 

77.2 ±
6.7 

79.3 ±
4.3 

82.3 ±
0.9 

Average 78.7 71.8 71.0 73.8 75.6 76.2 77.4 74.6 88.6 79.4 82.6 82.7  
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cell shows the AUC scores corresponding to OCC algorithms and seen 
users who are the target person for authentication. OCLCB shows the 
best AUC scores for two seen classes and the second-best on average. 
Therefore, OCLCB can be considered an alternative solution for OCTSC. 
The method proposed by Blázquez-García et al. achieves the highest 
average AUC score. 

In addition, Table 3 compares the processing time in a non-GPU 
environment using Intel® Core™ i9-9900 K CPU @ 3.60 GHz, and 
RAM 64 GB. Training and testing times are calculated separately, and 
the number of training and testing signals is the same as Hayashi et al. 
(2022), consisting of 1600 and 7400 signals, respectively. OCLCB ach
ieves a fast training time among the evaluated methods, which is ad
vantageous for parameter tuning. However, its testing time is increased 

Table 3 
Comparison of processing time.  

Method Training time 
(second) 

Testing time 
(second) 

Mauceri et al. (2020) 1.39 0.93 
Blázquez-García et al. (2021) 840 1440 
OCSTN (1 STN) (Hayashi et al., 

2022) 
276 3.46 

OCSTN (5 STNs) (Hayashi et al., 
2022) 

1178 16.8 

OCLCB 16.3 62.0  

Fig. 2. Synthetic signals for the experiment.  

Fig. 3. Unseen scores obtained by OCLCB.  
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due to the need to extract sliding windows and apply a clustering 
algorithm. 

According to Table 2 and Table 3, the AUC score and processing time 
are trade-off practices. The method from Blázquez-García et al. has the 
highest AUC score but the lowest processing speed, while Mauceri et al. 
has the fastest processing time but the lowest AUC. Moreover, OCSTN 
and OCLCB provide fair results in the trade-off of AUC score and pro
cessing speed. 

Since the comparison uses a signal length of 660, the main advantage 
of OCLCB—not requiring model retraining for different signal length
s—is not utilized. Nevertheless, OCLCB shows fair performance in terms 
of AUC scores and processing speed. These aspects support the idea that 
OCLCB can perform well with minimal drawbacks. 

3.3. Change detection task 

Change detection is evaluated using two datasets: a synthetic dataset 
and a breathing dataset. A synthetic dataset is created by connecting 
two different sine waves. Fig. 2 shows four synthetic signals. Signals 1 
and 2 change amplitudes (0.5 and 1.0), while signals 3 and 4 change the 
period (400 and 800). All synthetic signals have 12,000 values, and 
changes exist in a connected point (the index is 8000). Training data are 
shown before the green line (the first 4000 values). 

Fig. 3 visualizes the unseen scores obtained by OCLCB, where signals 
are preprocessed into subsignals by sliding windows (local size = 800). 
The yellow line indicates the start of the change, while the red line 
shows the end of the change. The sliding windows between these lines 
include the parts for both before and after the change. OCLCB detected 
the synthetic changes for all signals. The amplitude changes (Signals 1 
and 2) provided the highest unseen scores after the change, while the 
cycle changes (Signals 3 and 4) offered the highest unseen scores around 
the change. It is important to note that the results might differ when the 
signal has different shapes or change ratios. 

Table 4 provides the AUC comparison with other OCTSC algorithms. 
The signals are preprocessed into subsignals by sliding windows (win
dow size = 800) to apply these algorithms. The compared methods 
include Mauceri et al. (KL), Blázquez-García et al. (Prob Acc), OCSTN (1 
STN), and OCLCB. 

OCLCB shows a competitive AUC score for detecting the change in 
synthetic signals. The method from Mauceri et al. achieved the best 
AUC, while Blázquez-García et al. showed a high AUC as well. It is 
important to note that Table 2 provides more substantial evidence than 
Table 4 for AUC comparison because the dataset is an actual signal. On 
the other hand, Table 4 suggests a fundamental problem for OCSTN, 
which is that it requires parameter tuning to improve the AUC. Such a 
process requires much retraining of the models. 

The breathing dataset (Studnicka, 2022b) is a real-world dataset 
that includes BCG signals collected from tested individuals who varied 
their breathing behavior according to the measuring schedule (Cimr 
et al., 2020) (see Table 5). 

The training data consist of the beginning of the signal (the first 50 s) 
because these parts do not include the breathing event. OCLCB is 
compared for change detection with the methods from Mauceri et al. 
(KL), Blázquez-García et al., and OCSTN. 

Table 4 
Comparison of AUC scores for synthetic signals.  

Algorithms Signal 1 Signal 2 Signal 3 Signal 4 

Mauceri et al. (2020) 99.94 ± 
0.00 

99.89 ± 
0.00 

99.89 ± 
0.00 

99.89 ±
0.00 

Blázquez-García et al. 
(2021) 

99.69 ±
0.24 

99.49 ±
0.39 

99.76 ±
0.12 

99.38 ±
0.68 

OCSTN (Hayashi et al., 
2022) 

77.81 ±
9.08 

33.54 ±
4.69 

59.70 ±
9.63 

51.35 ±
3.64 

OCLCB 99.89 ±
0.04 

99.86 ±
0.03 

99.80 ±
0.05 

99.90 ± 
0.04  

Table 5 
Measuring schedule.  

Time (s) Event 

0 start of measuring on back 
60 breath-holding during inhalation (30 s) 
120 breath-holding during inhalation (30 s) 
180 breath-holding during exhalation (30 s) 
240 breath-holding during exhalation (30 s) 
300 underlay of legs for position change 
420 turning on the side. 
480 breath-holding during inhalation (30 s) 
540 breath-holding during inhalation (30 s) 
600 breath-holding during exhalation (30 s) 
660 breath-holding during exhalation (30 s) 
720 end of measuring  

Fig. 4. Comparison of change detection for the breathing dataset (signal length = 660).  
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The evaluation is made with visual analysis based on the following 
hypotheses:  

• Unseen score increases (seen score decreases) around breathing 
events that are marked by red lines.  

• The unseen score increases (seen score decreases) after the change in 
body position. 

Table 6 
Experimental parameters.  

Parameter Values 

Window size for clustering 2, 3, 4, 5, 6, 7, 8, 9, 10 
Number of clusters 2, 3, 5, 10, 15, 20, 25, 50 
Local size 50, 100, 500, 660, 1000, 2000, 5000, 10,000  

Fig. 5. Comparison of window sizes (breathing dataset).  

Fig. 6. Comparison of the number of clusters (breathing dataset).  
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Fig. 4 visualizes seen scores (for Blázquez-García et al.) and unseen 
scores (for the rest of the methods) for four OCSTN algorithms. Mauceri 
et al., Blázquez-García et al., and OCLCB increased unseen scores (or 
decreased seen scores) around body position changes. However, OCSTN 
did not show high unseen scores around the change and exhibited low 
variance, which can be problematic in determining the threshold value. 
On the other hand, the methods from Mauceri et al. and Blázquez-García 
et al. overfit to training parts, while OCLCB did not exhibit this issue 
because the model is trained from sliding windows. 

However, the visual analysis does not show clear differences in the 
unseen scores for changes in breathing behavior, possibly due to the 
small window size used. Further experiments should be performed with 
different signal lengths. Nevertheless, other OCTSC algorithms require 
model retraining and parameter tuning for different lengths of signals, 
while OCLCB does not have this issue because the model is created from 
few-dimensional sliding windows. 

4. Discussion 

4.1. Parameter analysis 

OCLCB has three parameters: window size for clustering, number of 
clusters, and local size. This study performed the grid search for the 
parameters provided in Table 6. 

Fig. 5 compares the window size for clustering. In the comparison, all 
results appeared to be the same; window size does not change the re
sults. Therefore, the size should be two because a smaller window size 
gives faster processing speed. 

On the other hand, Fig. 6 compares different numbers of clusters. 
Small values (2, 3, and 5) degrade the performance. In these cases, the 
number of clusters is smaller than the number of shape types in the 
signal, and clusters cannot cover all shape types. 

Fig. 7 compares the local size parameter, which has the most sig
nificant differences in these three parameters. A larger local size is better 
because it reduces the noise in unseen scores. On the other hand, a larger 
size increases testing time in the actual application because the 

algorithm needs to collect extensive information. This is a trade-off that 
should be decided based on the purpose of the application. For example, 
a long testing time is acceptable for analyzing changes with no urgency, 
while a short testing time is needed to quickly detect an emergency. 

Fig. 8 illustrates the relationship between AUC and local size using 
synthetic signals. The AUC is computed for every 50 local sizes between 
50 and 2000. It is important to note that the local size should be larger 
than the cycle of the trained signal, where signal 3 starts with a period of 
800, and the other signals start with 400. This ensures that the clusters 
cover all shapes in the cycle. 

OCLCB has difficulty detecting Signal 3, which includes a period 
change from a large cycle to a small cycle. The local size needs to be 
equal to the period or its multiples. Otherwise, the AUC scores are 
degraded. In the actual signal, the period is unknown, but the larger 
local sizes have a greater chance of being multiples of the period. 

According to Fig. 5-Fig. 8, the sliding window size should be 2, and 
the number of clusters should be more than 10. Moreover, the local size 
should be a multiple of the period; increasing the local size is a simple 

Fig. 7. Comparison of local sizes (breathing dataset).  

Fig. 8. Comparison of local sizes (synthetic dataset).  
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way to achieve such requirements for real data. 

4.2. Change detection in authentication dataset 

This section applies OCLCB to change detection for the authentica
tion dataset. Evaluation is not possible because no information is given 
about the changes, but the result will support the authentication task. 
Data are sliding windows extracted from the signal. The training data 
consist of the parts before the green line that have one million values at 
330 Hz. Therefore, training data are values of approximately 3000 s. 

Fig. 9 visualizes the unseen scores. Changes are detected in 19 sig
nals, while ID 11 shows consistent unseen scores with a maximum value 
of approximately 20, which can provide a high AUC score in OCTSC. 

The authentication dataset is collected from sleeping individuals. 
Therefore, the algorithms detected the changes during sleeping. Two 
possible explanations for the changes are considered:  

• Changes are related to the cycle of sleep.  
• Individuals change their body positions during sleep. 

If the algorithm were able to detect sleep cycles, it would be an 
interesting finding for further study. However, these changes would 
degrade the AUC score on the authentication task. This limitation 
highlights the need for consistent signals in the authentication task, 
which could be addressed in future work. 

4.3. Advantages and limitations 

The main advantage of OCLCB is its robustness to changes in signal 
length, while other OCC methods need model retraining to classify 
different signal lengths, which reduces the parameter tuning cost. 
Additionally, OCLCB has the advantage of processing large-length 
sliding windows, as the method can represent a large window as a K- 
dimensional vector. In contrast, the approach from Blázquez-García 
et al. takes time to process large data as the algorithm creates self- 
labeled data for each window. OCSTN has problems processing sliding 
windows, and the method from Mauceri et al. has memory issues when 
sliding windows have LS-length. 

On the other hand, OCLCB has limitations in detecting signal cycle 

changes from a large value to a small value. In these cases, OCLCB must 
use local sizes equal to the period or its multiples. However, estimating 
the period is not easy in real world data. Another limitation is deciding 
the threshold value because the OCC algorithm cannot access unseen 
classes during the training stage. The threshold can be selected, such as 
“the value larger than N% of unseen scores in training data”. However, 
confidence is only given with access to actual unseen classes. 

5. Conclusion and future work 

This paper proposes an OCLCB algorithm that extracts feature vec
tors by cluster balance of sliding windows. The unseen score is computed 
by the distance metric between the training and testing data. The main 
advantage of the proposed OCLCB algorithm is that the model does not 
require retraining to process signals of different lengths, which supports 
parameter tuning. 

Further study is needed to improve the AUC score of the model. The 
main challenge is how to determine the appropriate local size. More
over, exploring alternative distance metrics and clustering algorithms, 
as well as increasing the number of prototypes, could improve the AUC. 
Furthermore, applying LCB to other types of data could avoid the need 
for model retraining. Another important challenge is creating more 
synthetic signals to address specific problem settings, such as dataset 
corruption, and to help identify the limitations of existing TSC and 
OCTSC algorithms. 
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Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. the Journal of 
machine Learning research, 12, 2825–2830. 

Rjoob, K., Bond, R., Finlay, D. D., McGilligan, V., Leslie, S. J., Rababah, A., … 
Macfarlane, P. W. (2022). Machine learning and the electrocardiogram over two 
decades: Time series and meta-analysis of the algorithms, evaluation metrics and 
applications. Artificial Intelligence in Medicine, 132, Article 102381. https://doi.org/ 
10.1016/j.artmed.2022.102381 

Ruff, L., Vandermeulen, R. A., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., 
Müller, E., & Kloft, M. (2018). Deep one-class classification. In International 
Conference on Machine Learning (pp. 4393–4402). http://proceedings.mlr.press/v80/ 
ruff18a/ruff18a.pdf. 

T. Hayashi et al.                                                                                                                                                                                                                                

https://doi.org/10.1007/s10618-018-0596-4
https://doi.org/10.1007/s10618-018-0596-4
https://doi.org/10.1016/j.future.2021.06.046
https://doi.org/10.1016/j.future.2021.06.046
https://doi.org/10.1016/j.eswa.2021.116371
https://doi.org/10.1016/j.eswa.2021.116371
https://doi.org/10.1016/j.eswa.2020.114162
https://doi.org/10.1016/j.bspc.2022.104055
https://doi.org/10.1016/j.bspc.2022.104055
https://doi.org/10.1109/tpami.2013.72
https://doi.org/10.1016/j.ins.2021.06.015
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1109/tcyb.2018.2838668
https://doi.org/10.3390/s21113880
https://doi.org/10.1016/j.asoc.2021.107826
https://doi.org/10.1016/j.asoc.2021.107826
https://doi.org/10.1016/j.ins.2020.05.051
https://doi.org/10.1016/j.cmpb.2021.106149
https://doi.org/10.1016/j.knosys.2022.109026
https://doi.org/10.1016/j.knosys.2022.109026
https://doi.org/10.1016/j.eswa.2020.113705
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0080
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0080
https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.1016/j.ins.2021.01.069
https://doi.org/10.1016/j.ins.2021.01.069
https://doi.org/10.1007/s00500-022-07414-z
https://doi.org/10.1016/j.ins.2022.09.027
https://doi.org/10.1016/j.ins.2022.09.027
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0105
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0105
https://doi.org/10.1016/j.ins.2020.06.019
https://doi.org/10.1016/s0925-2312(01)00706-8
https://doi.org/10.1016/j.eswa.2021.116356
https://doi.org/10.1016/j.eswa.2021.115920
https://doi.org/10.1016/j.knosys.2021.107492
https://doi.org/10.1016/j.knosys.2021.107492
https://doi.org/10.1109/tkde.2018.2806975
https://doi.org/10.1109/tkde.2018.2806975
https://doi.org/10.1016/j.dss.2011.12.014
https://doi.org/10.1016/j.dss.2011.12.014
https://doi.org/10.1016/j.patcog.2021.107991
https://doi.org/10.1016/j.inffus.2022.10.008
https://doi.org/10.1016/j.patcog.2022.108763
https://doi.org/10.1145/882082.882086
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0165
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0165
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0170
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0170
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0170
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0170
https://doi.org/10.1016/j.patcog.2019.107122
https://doi.org/10.1016/j.eswa.2022.117206
https://doi.org/10.1016/j.engappai.2021.104426
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0190
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0190
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0190
https://doi.org/10.1016/j.artmed.2022.102381
https://doi.org/10.1016/j.artmed.2022.102381
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0200
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0200
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0200
http://refhub.elsevier.com/S0957-4174(23)01703-7/h0200


Expert Systems With Applications 235 (2024) 121201

13

Sadek, I., Seet, E., Biswas, J., Abdulrazak, B., & Mokhtari, M. (2018). Nonintrusive vital 
signs monitoring for sleep apnea patients: A preliminary study. IEEE Access, 6, 
2506–2514. https://doi.org/10.1109/access.2017.2783939 
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